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Abstract. In this note we present a proof of the result that, for any simply-connected,
connected and compact Lie group G, viewed as a G-space with conjugation action,
K∗
G(G) ∼= Ω∗

R(G)/Z, the ring of Grothendieck differentials of the complex representation
ring. The proof hinges on the computation of a certain equivariant index, which is a slight
modification of the argument in [At].

1. Introduction

In [BZ], Brylinski and Zhang showed the following

Theorem 1.1. For any compact connected Lie group G with π1(G) torsion-free, which is
viewed as a G-space with conjugation action, K∗G(G) is isomorphic, as R(G)-algebras, to
Ω∗R(G)/Z, the ring of Grothendieck differentials of the representation ring R(G).

Their proof is outlined as follows.

(1) Let V be the underlying vector space of the representation ρ. The ring homomor-
phism ϕ : Ω∗R(G)/Z → K∗G(G) defined by

ϕ(ρ) = [G× V ] ∈ K0
G(G)

ϕ(dρ) = [0 −→ G× R× V ψ−→ G× R× V −→ 0] ∈ K−1
G (G)

where ψ(g, t, v) = (g, t, tρ(g)v) and the G-action is the diagonal one, is an R(G)-
algebra homomorphism.

(2) By using Hodgkin’s spectral sequence for equivariant K-theory ([HS]) and Segal’s
localization theorem for equivariant K-theory ([S]), they showed that K∗G(G) is a

free R(G)-module of rank 2l, where l = rank(G).
(3) Consider the composition of maps

Ω∗R(G)/Z
ϕ−→ K∗G(G)

α−→ K∗T (G)
i∗−→ K∗T (T ) ∼= Ω∗R(T )/Z

If

i∗ ◦ α ◦ ϕ : Ω∗R(G)/Z
∼=−→ (Ω∗R(T )/Z)W(1)
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then ϕ is injective. Moreover, α is injective by the ‘splitting principle’, and i∗, being
a localization map, is injective on R(T )-torsion-free elements, in particular Im(α),
by Segal’s localization theorem. Thus i∗ ◦ α is injective. Noting that Im(i∗ ◦ α) ⊆
K∗T (T )W and assuming that the isomorphism (1) is true, one can conclude that ϕ
is surjective and hence an isomorphism. A significant part of their proof is devoted
to showing that (1) holds, using algebro-geometric arguments.

In this note, we present an alternative proof of Theorem 1.1 for the special case of simply-
connected compact Lie groups. We replace step (3) of their proof with an index theory
argument which is essentially a slight modification of the argument in Atiyah’s computa-
tion of ordinary K-theory of simply-connected compact Lie groups ([At]), followed by an
abelianization result in equivariant K-theory ([HLS]). Throughout this note G denotes
any simply-connected, connected and compact Lie group and T its maximal torus.

2. The proof

Lemma 2.1. K∗T (G) is a free R(T )-module of rank 2l.

Proof. By Lemma 2.5 of [BZ], K∗T (G) ∼= K∗G(G)⊗R(G)R(T ) as R(T )-modules. Since K∗G(G)

is a free R(G)-module of rank 2l (Lemmata 4.4 and 4.5 of [BZ]), the result follows. �

Definition 2.2. Let IndGT : K∗T (G) → K∗T (pt) be the composition of Thom isomorphism

thTG : K∗T (G)→ K∗+dimG
T (TG) and the T -equivariant index map K∗T (TG)→ K∗T (pt).

Lemma 2.3. IndGT (u) =
IndTT i

∗u∏
α∈∆−(1− eα)

Proof. This is essentially the Atiyah-Segal localization formula for equivariant index ([AS]).
Consider the following commutative diagram

TT
i2 //

π
##

TG|T
i1 //

π2
��

TG

π1
��

T
i // G

Then

IndGT (u) = IndTGT (π∗1u · τTG/G)

= IndTTT
i∗2 ◦ i∗1(π∗1u · τTG/G)

π∗(
⊕

i(−1)i
∧iN ⊗R C)

where N is the normal bundle of T in G. Note that N ∼= T × g/t = T ×
⊕

α∈∆+ mα. So⊕
i

(−1)i
∧i

N ⊗R C =
∏
α∈∆

(1− eα)⊗ 1 ∈ R(T )⊗K∗(T ) ∼= K∗T (T )
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i∗2 ◦ i∗1(π∗1u · τTG/G) = i∗2(π∗2(i∗u) · τTG|T /T )

= i∗2(π∗2(i∗u) · (π∗3τTT/T · τTG|T /TT ))

= π∗(i∗u) · τTT/T · i∗2τTG|T /TT

= π∗(i∗u) · τTT/T · (
⊕
i

(−1)iπ∗(
i∧
N))

= π∗(i∗u · (
∏
α∈∆+

(1− eα)⊗ 1)) · τTT/T

It follows that

IndTTT
i∗2 ◦ i∗1(π∗1u · τTG/G)

π∗(
⊕

i(−1)i
∧iN ⊗R C)

=IndTTT π∗
(
i∗u · (

∏
α∈∆+(1− eα ⊗ 1))∏

α∈∆(1− eα)⊗ 1

)
· τTT/T

=IndTT
i∗u∏

α∈∆−(1− eα)⊗ 1

=
IndTT i

∗u∏
α∈∆−(1− eα)

�

Definition 2.4. β(ρ) := ϕ(dρ)

Proposition 2.5. i∗β(ρ) =

dimρ∑
j=1

eλj ⊗ β(λj) ∈ K−1
T (T ), where λj are the weights of ρ.

Proof. This follows easily by restricting the complex of T -equivariant vector bundles

0 −→ G× R× V ψ−→ G× R× V −→ 0

to

0 −→ T × R× V ψ|T×R×V−→ T × R× V −→ 0

and noting that the second complex can be decomposed into a direct sum of complexes
of 1-dimensional T -equivariant vector bundles, each of which corresponds to a weight of
ρ. �

The following is an equivariant analogue of Lemma 3 of [At].

Lemma 2.6.

i∗

(
l∏

i=1

β(ρi)

)
= dG ⊗

l∏
i=1

β($i)

where ρi is the i-th fundamental representation, $i is the i-th fundamental weight and
dG ∈ R(T ) is the Weyl denominator.
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Proof. By Proposition 2.5,

i∗

(
l∏

i=1

β(ρi)

)
=

l∏
i=1

dimρi∑
j=1

e$ij ⊗ β($ij)(2)

The right-hand side must be of the form A ⊗
∏l
i=1 β($i) for some A ∈ R(T ). Since

i∗(
∏l
i=1 β(ρi)) is W -invariant and

∏l
i=1 β($i) is anti-W -invariant, A is anti-W -invariant

and of the form
∑
w∈W

n∑
i=1

sgn(w)ew·γi , where γi lie in the positive Weyl chamber. Let γ1 be

the highest weight among λ1, · · · , λn. By comparing the right-hand side of Eq. (2) and

A ⊗
∏l
i=1 β($i), λ1 =

l∑
i=1

$i := θ (the half sum of positive roots). Note that λ1 is the

lowest weight in the interior of the positive Weyl chamber, and that if γ lies on any wall

of the chamber,
∑
w∈W

sgn(w)ew·γ = 0. As a result, A =
∑
w∈W

sgn(w)ew·θ = dG. �

Lemma 2.7. The map IndT : K∗(T )
thTT/T−→ K∗(TT )

IndTT−→ K∗(pt) sends
l∏

i=1

β($i) to 1.

Proof. See [At]. �

Corollary 2.8. IndGT

(
l∏

i=1

β(ρi)

)
= e−θ

Proof.

IndGT

(
l∏

i=1

β(ρi)

)
=

IndTT

(∑
w∈W sgn(w)ew·θ ⊗

∏l
i=1 β($i)

)
∏
α∈∆−(1− eα)

=

∏
α∈∆+(e

α
2 − e−

α
2 )⊗ IndT

∏l
i=1 β($i)∏

α∈∆+(1− e−α)

= e−θ

�

Proposition 2.9. ϕ :
∧
R(T )(dρ1, · · · , dρl)→ K∗T (G) is an algebra isomorphism.

Proof. Define k : K∗T (G)→ HomR(T )(
∧
R(T )(dρ1, · · · , dρl), R(T )) by x 7→ (y 7→ IndTT (xϕ(y))).

Corollary 2.8 implies that k ◦ ϕ is an R(T )-module isomorphism (as the equivariant index
e−θ is invertible in R(T )), which in turn implies that ϕ is injective, and Im(ϕ) is a direct
summand of K∗T (G). Being both of rank 2l, Im(ϕ) = K∗T (G). �
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Theorem 2.10. (1) α : K∗G(G) → K∗T (G)W is a ring isomorphism. Here W acts on
the coefficient ring K∗T (pt) = R(T ) in the following sense. If E is a T -equivariant
vector bundle, then w · E is the same vector bundle with a new T -action given by
t ∗ v = (w · t) · v.

(2) ϕ :
∧
R(T )(dρ1, · · · , dρl)→ K∗T (G) is W -equivariant.

(3) ϕ :
∧
R(G)(dρ1, · · · , dρl)→ K∗G(G) is an algebra isomorphism.

Proof. (1) is a consequence of Lemma 2.1 and part (i) of Corollary 4.10 of [HLS]. (2) is
obvious from the definition of ϕ. (3) follows immediately from Proposition 2.9, (1) and
(2). �
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